Numerical analysis of an inverse problem for the eikonal equation
نویسندگان
چکیده
We are concerned with the inverse problem for an eikonal equation of determining the speed function using observations of the arrival time on a fixed surface. This is formulated as an optimisation problem for a quadratic functional with the state equation being the eikonal equation coupled to the so-called Soner boundary condition. The state equation is discretised by a suitable finite difference scheme for which we obtain existence, uniqueness and an error bound. We set up an approximate optimisation problem and show that a subsequence of the discrete mimina converges to a solution of the continuous optimisation problem as the mesh size goes to zero. The derivative of the discrete functional is calculated with the help of an adjoint equation which can be solved efficiently by using fast marching techniques. Finally we describe some numerical results. Mathematics Subject Classification (2010) 49J20 · 49L25 · 49M25 · 65M06 · 65N06 K. Deckelnick (B) Institut für Analysis und Numerik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany e-mail: [email protected] C. M. Elliott Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK e-mail: [email protected] V. Styles Department of Mathematics, University of Sussex, Brighton BN1 9RF, UK e-mail: [email protected]
منابع مشابه
Optimal Control of Light Propagation Governed by Eikonal Equation within Inhomogeneous Media Using Computational Adjoint Approach
A mathematical model is presented in the present study to control the light propagation in an inhomogeneous media. The method is based on the identification of the optimal materials distribution in the media such that the trajectories of light rays follow the desired path. The problem is formulated as a distributed parameter identification problem and it is solved by a numerical met...
متن کاملSolving the inverse problem of determining an unknown control parameter in a semilinear parabolic equation
The inverse problem of identifying an unknown source control param- eter in a semilinear parabolic equation under an integral overdetermina- tion condition is considered. The series pattern solution of the proposed problem is obtained by using the weighted homotopy analysis method (WHAM). A description of the method for solving the problem and nding the unknown parameter is derived. Finally, tw...
متن کاملParameter determination in a parabolic inverse problem in general dimensions
It is well known that the parabolic partial differential equations in two or more space dimensions with overspecified boundary data, feature in the mathematical modeling of many phenomena. In this article, an inverse problem of determining an unknown time-dependent source term of a parabolic equation in general dimensions is considered. Employing some transformations, we change the inverse prob...
متن کاملA fast marching algorithm for the factored eikonal equation
The eikonal equation is instrumental in many applications in several fields ranging from computer vision to geoscience. This equation can be efficiently solved using the iterative Fast Sweeping (FS) methods and the direct Fast Marching (FM) methods. However, when used for a point source, the original eikonal equation is known to yield inaccurate numerical solutions, because of a singularity at ...
متن کاملBoundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method
In this paper, we consider an inverse boundary value problem for two-dimensional heat equation in an annular domain. This problem consists of determining the temperature on the interior boundary curve from the Cauchy data (boundary temperature and heat flux) on the exterior boundary curve. To this end, the boundary integral equation method is used. Since the resulting system of linea...
متن کاملAn inverse problem of identifying the coefficient of semilinear parabolic equation
In this paper, a variational iteration method (VIM), which is a well-known method for solving nonlinear equations, has been employed to solve an inverse parabolic partial differential equation. Inverse problems in partial differential equations can be used to model many real problems in engineering and other physical sciences. The VIM is to construct correction functional using general Lagr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Numerische Mathematik
دوره 119 شماره
صفحات -
تاریخ انتشار 2011